随着时间的推移,视频活动定位的当前方法隐含地假设标记为模型训练的活动时间边界是确定且精确的。但是,在无脚本的自然视频中,不同的活动主要是顺利进行的,因此确切地确定活动何时随着时间的推移开始和结束,确定在本质上是模棱两可的。目前,在模型培训中,这种时间标签中的这种不确定性被忽略了,从而导致学习错误匹配的视频文本相关性,而测试中的概括不佳。在这项工作中,我们通过引入弹性力矩边界(EMB)来解决此问题,以适应灵活和适应性活动的时间边界,以建模普遍可解释的视频文本相关性与对预固定注释中的时间不确定性的宽容相关性。具体而言,我们通过挖掘和发现框架的时间端点可以适应地构建弹性边界,从而可以最大程度地利用视频片段和查询句子之间的对齐方式。为了启用更健壮的匹配(段内容注意力)和更准确的定位(段弹性边界),我们通过新颖的引导注意力机制优化了框架端点的选择。在三个视频活动定位基准上进行的广泛实验表明,在没有建模不确定性的情况下,EMB比现有方法的优势令人信服。
translated by 谷歌翻译
虽然通过学习特定于样本的鉴别视觉特征,但对比学习最近对未标记图像的深度聚类引起了显着的益处,但其对明确推断的类决策界限的可能性不太了解。这是因为它的实例鉴别策略不是类敏感性,因此,没有优化导出的特定于特定于特定的特征空间的簇,以便对应于有意义的类决策边界进行了优化。在这项工作中,我们通过引入语义对比学习(SCL)来解决这个问题。通过制定语义(群集感知)对比学习目标,SCL对未标记的训练数据进行了明确的基于距离的群集结构。此外,我们引入了通过实例视觉相似性和群集决策边界共同满足的聚类一致性条件,并同时通过他们的共识,同时优化了关于语义地面类别(未知/未标记)的假设。这种语义对比学习方法来发现未知类决策界限对无监督对象识别任务的学习具有相当大的优势。广泛的实验表明,SCL在六个对象识别基准上表现出最先进的对比学习和深度聚类方法,特别是在更具有挑战性的更精细的粒度和更大的数据集。
translated by 谷歌翻译
脊柱退化困扰着许多长老,办公室工作者,甚至是年轻世代。有效的药剂或外科干预措施可以帮助缓解退行性脊柱条件。然而,传统的诊断程序往往太费力了。临床专家需要从脊柱磁共振成像(MRI)或计算机断层扫描(CT)图像中检测椎间盘和椎骨作为进行病理诊断或术前评价的初步步骤。已经开发了机器学习系统,以帮助这一程序通常在两级方法之后:首先进行解剖定位,然后进行病理分类。为了更高效和准确的诊断,我们提出了一种单阶段检测框架,称为Spineone,同时定位和分类来自MRI切片的退化椎间盘和椎骨。脊柱内置于以下三个关键技术:1)Keypoint Heatmap的新设计,以促进同时关键点本地化和分类; 2)使用注意力模块更好地区分光盘和椎骨之间的表示; 3)一种新颖的梯度引导的客观协会机制,将多个学习目标与后来的培训阶段相关联。脊髓疾病智能诊断的经验结果Tianchi竞争(SDID-TC)550考试的数据集表明,我们的方法通过大幅度超越现有方法。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译